

Technical Datasheet

HiGlutaXL[™] Dulbecco's Modified Eagle Medium /Nutrient Mixture F-12 Ham (DMEM/ F12,1:1 mixture)

With L-Álanyl-L-Glutamine and Trace elements Without HEPES buffer and Sodium bicarbonate

Product Code: AT127G

Product Description:

Dulbecco's Modified Eagle Medium/Nutrient Mixture F12 Ham (DMEM/F12, 1:1 mixture) was originally formulated for rat neuroblastoma cells and MDCK cells. The mixture is extremely nutritious and supports growth of a wide variety of cells including certain epithelial, endothelial and granulosa cells.

HiGlutaXLTM medium contains the stabilised dipeptide form of L-glutamine, L-alanyl-L-glutamine. HiGlutaXLTM medium offers several advantages over the conventional glutamine containing media. Dipeptide form prevents the intramolecular cyclization reaction, thus preventing toxic build up of ammonia. L-alanyl-Lglutamine incorporates L-alanine that protects the alpha amino acid group. Aminopeptidases within the cell break the dipeptide, gradually releasing both L-glutamine and L-alanine for use by the cell. The gradual release of Lglutamine obviates the need to supplement L-glutamine frequently and allows liquid media to be stored at 4°C.

AT127G is HiGlutaXL[™] Dulbecco's Modified Eagle Medium / Nutrient Mixture F-12 Ham(DMEM/F12, 1:1 Mixture) with L-alanyl-L-glutamine and Trace elements. It does not contain HEPES buffer. Users are advised to review the literature for recommendations regarding medium supplementation and physiological growth requirements specific for different cell lines.

Composition:

Ingredients	mg/L
INORGANIC SALTS	0 00059
Ammonium metavanadate	0.00058
Ammonium molybdate tetrahydrate	0.00618
Calcium chloride dihydrate	154.500
Copper sulphate pentahydrate	0.0013
Disodium hydrogen phosphate	71.020
Ferric nitrate nonahydrate	0.050
Ferrous sulphate heptahydrate	0.417
Magnesium chloride hexahydrate	61.200

Manual and Library to the second	48.840
Magnesium sulphate anhydrous	0.000151
Manganese sulphate Nickel chloride	0.000131
Potassium chloride	311.800
Sodium chloride	6996.000
	54.300
Sodium dihydrogen phosphate	0.0142
Sodium metasillicate nonahydrate	0.00519
Sodium selenite	0.00011
Stannous chloride dihydrate	0.432
Zinc sulphate heptahydrate	0.432
AMINO ACIDS	10.750
Glycine	18.750
L-Alanine	4.450
L-Alanyl-L-Glutamine	543.000
L-Arginine hydrochloride	147.500
L-Asparagine monohydrate	7.500
L-Aspartic acid	6.650
L-Cysteine hydrochloride monohydrate	31.290
L-Cystine dihydrochloride	17.560
L-Glutamic acid	7.350
L-Histidine hydrochloride monohydrate	31.480
L-Isoleucine	54.470
L-Leucine	59.050
L-Lysine hydrochloride	91.250
L-Methionine	17.240
L-Phenylalanine	35.480
L-Proline	17.250
L-Serine	26.250
L-Threonine	53.450
L-Tryptophan	9.020
L-Tyrosine disodium salt dihydrate	48.100
L-Valine	52.850
VITAMINS	
Choline chloride	8.980
D-Biotin	0.0035
D-Ca-Pantothenate	2.240
Folic acid	2.660
	2.000

Niacinamide Pyridoxal hydrochloride Pyridoxine hydrochloride	2.020 2.000
Riboflavin	0.031 0.219
Thiamine hydrochloride Vitamin B12	2.170
myo-Inositol	$0.680 \\ 12.600$
OTHERS	
D-Glucose DL-Thioctic acid	3151.000 0.105
Hypoxanthine sodium salt	2.400
Linoleic acid	0.042
Phenol red sodium salt	8.630 0.081
Putrescine hydrochloride Sodium pyruvate	110.000
Thymidine	0.365

Directions :

1. Suspend 12.3gms in 900ml tissue culture grade water with constant, gentle stirring until the powder is completely dissolved. Do not heat the water.

2. Add 1.2gms of sodium bicarbonate powder (TC230) or 16.0ml of 7.5% sodium bicarbonate solution (TCL013) and 0.365gms of L-glutamine powder (TC243) or 12.5ml of 200mM L-glutamine solution (TCL012) for 1 litre of medium and stir until dissolved.

3. Adjust the pH to 0.2 - 0.3 pH units below the desired pH using 1N HCl or 1N NaOH since the pH tends to rise during filtration.

4. Make up the final volume to 1000ml with tissue culture grade water.

5. Sterilize the medium immediately by filtering through a sterile membrane filter with a porosity of 0.22 micron or less, using positive pressure rather than vacuum to minimize the loss of carbon dioxide.

6. Aseptically add sterile supplements as required and dispense the desired amount of sterile medium into sterile containers.

7. Store liquid medium at 2-8°C and in dark till use.

Material required but not provided :

Tissue culture grade water (TCL010) Sodium bicarbonate (TC230) Sodium bicarbonate solution 7.5% (TCL013) 1N Hydrochloric acid (TCL003) 1N Sodium hydroxide (TCL002) Foetal bovine serum (RM1112/RM10432)

Quality Control:

Appearance

White to light pink, homogenous powder

Solubility Clear solution at 12.3gms/L

pH without Sodium Bicarbonate 6.00 -6.60

pH with Sodium Bicarbonate

7.20 - 7.80

Osmolality without Sodium Bicarbonate(mOsm/Kg H₂O) 260.00 -300.00

Osmolality with Sodium Bicarbonate(mOsm/kg H₂O) 285.00 -325.00

Cultural Response

The growth promotion capacity of the medium is assessed qualitatively by analyzing the cells for the morphology and quantitatively by estimating the cell counts.

Endotoxin Content

NMT 1EU/ml

Storage and Shelf Life:

1. All the powdered media and prepared liquid culture media should be stored at 2-8°C. Use before the expiry date. In spite of above recommended storage condition, certain powdered medium may show some signs of deterioration /degradation in certain instances. This can be indicated by change in colour, change in appearance and presence of particulate matter and haziness after dissolution.

2. Preparation of concentrated medium is not recommended since free base amino acids and salt complexes having low solubility may precipitate in concentrated medium.

3. pH and sodium bicarbonate concentration of the prepared medium are critical factors affecting cell growth. This is also influenced by amount of medium and volume of culture vessel used (surface to volume ratio). For example, in large bottles, such as Roux bottles pH tends to rise perceptibly as significant volume of carbon dioxide is released. Therefore, optimal conditions of pH, sodium bicarbonate concentration, surface to volume ratio must be determined for each cell type. We recommend stringent monitoring of pH. If needed, pH can be adjusted by using sterile 1N HCl or 1N NaOH or by bubbling in carbon dioxide.

4. If required, supplements can be added to the medium prior to or after filter sterilization observing sterility precautions. Shelf life of the medium will depend on the nature of supplement added to the medium.

Revision : 04 / 2022

User must ensure suitability of the product(s) in their application prior to use. Products conform solely to the information contained in this and other related HiMedia[™] publications. The information contained in this publication is based on our research and development work and is to the best of our knowledge true and accurate. HiMedia[™] Laboratories Pvt Ltd reserves the right to make changes to specifications and information related to the products at any time. Products are not intended for human or animal or therapeutic use but for laboratory, diagnostic , research or further manufacturing use only, unless otherwise specified. Statements contained herein should not be considered as a warranty of any kind, expressed or implied, and no liability is accepted for infringement of any patents.

